Mister Exam

Other calculators

Integral of e^(t^2-t)*(-t^2+12t-20) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |    2                          
 |   t  - t /   2            \   
 |  E      *\- t  + 12*t - 20/ dt
 |                               
/                                
0                                
$$\int\limits_{0}^{1} e^{t^{2} - t} \left(\left(- t^{2} + 12 t\right) - 20\right)\, dt$$
Integral(E^(t^2 - t)*(-t^2 + 12*t - 20), (t, 0, 1))
Numerical answer [src]
-12.1720005463056
-12.1720005463056

    Use the examples entering the upper and lower limits of integration.