Mister Exam

Other calculators


e^sinx×cosx

Integral of e^sinx×cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
  /                  
 |                   
 |   sin(x)          
 |  e      *cos(x) dx
 |                   
/                    
pi                   
--                   
2                    
$$\int\limits_{\frac{\pi}{2}}^{\pi} e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$
Integral(E^sin(x)*cos(x), (x, pi/2, pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant is the constant times the variable of integration:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |  sin(x)                  sin(x)
 | e      *cos(x) dx = C + e      
 |                                
/                                 
$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = C + e^{\sin{\left(x \right)}}$$
The graph
The answer [src]
1 - e
$$1 - e$$
=
=
1 - e
$$1 - e$$
Numerical answer [src]
-1.71828182845905
-1.71828182845905
The graph
Integral of e^sinx×cosx dx

    Use the examples entering the upper and lower limits of integration.