1 / | | 2 | -x | E | ---- dx | x | / 0
Integral(E^(-x^2)/x, (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | 2 | -x / 2\ | E Ei\-x / | ---- dx = C + ------- | x 2 | /
/ pi*I\
Ei\e /
oo + ---------
2
=
/ pi*I\
Ei\e /
oo + ---------
2
oo + Ei(exp_polar(pi*i))/2
Use the examples entering the upper and lower limits of integration.