Mister Exam

Other calculators

Integral of e^(-x)*sen(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo              
  /              
 |               
 |   -x          
 |  e  *sin(x) dx
 |               
/                
-oo              
$$\int\limits_{-\infty}^{\infty} e^{- x} \sin{\left(x \right)}\, dx$$
Integral(sin(x)/E^x, (x, -oo, oo))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                             -x    -x       
 |  -x                 cos(x)*e     e  *sin(x)
 | e  *sin(x) dx = C - ---------- - ----------
 |                         2            2     
/                                             
$${{e^ {- x }\,\left(-\sin x-\cos x\right)}\over{2}}$$
The answer [src]
<-oo, oo>
$$-{{e^{{\it oo}}\,\sin {\it oo}-e^{{\it oo}}\,\cos {\it oo}}\over{2 }}-{{e^ {- {\it oo} }\,\left(\sin {\it oo}+\cos {\it oo}\right) }\over{2}}$$
=
=
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
Numerical answer [src]
-2.30141637303258e+4333359448156331752
-2.30141637303258e+4333359448156331752

    Use the examples entering the upper and lower limits of integration.