Mister Exam

Other calculators


e^-x/2e^(-2x)

You entered:

e^-x/2e^(-2x)

What you mean?

Integral of e^-x/2e^(-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   -x  -2*x   
 |  e  *e       
 |  --------- dx
 |      2       
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{e^{- 2 x} e^{- x}}{2}\, dx$$
Integral(1/(E^(1*x)*2*E^(2*x)), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        
 |                         
 |  -x  -2*x           -3*x
 | e  *e              e    
 | --------- dx = C - -----
 |     2                6  
 |                         
/                          
$$-{{e^ {- 3\,x }}\over{6}}$$
The graph
The answer [src]
     -3
1   e  
- - ---
6    6 
$${{{{1}\over{3}}-{{e^ {- 3 }}\over{3}}}\over{2}}$$
=
=
     -3
1   e  
- - ---
6    6 
$$- \frac{1}{6 e^{3}} + \frac{1}{6}$$
Numerical answer [src]
0.158368821938689
0.158368821938689
The graph
Integral of e^-x/2e^(-2x) dx

    Use the examples entering the upper and lower limits of integration.