1 / | | -2*x | e *sin(3*x) dx | / 0
Use integration by parts, noting that the integrand eventually repeats itself.
For the integrand :
Let and let .
Then .
For the integrand :
Let and let .
Then .
Notice that the integrand has repeated itself, so move it to one side:
Therefore,
Now simplify:
Add the constant of integration:
The answer is:
/ | -2*x -2*x | -2*x 3*cos(3*x)*e 2*e *sin(3*x) | e *sin(3*x) dx = C - ---------------- - ---------------- | 13 13 /
-2 -2 3 3*cos(3)*e 2*e *sin(3) -- - ------------ - ------------ 13 13 13
=
-2 -2 3 3*cos(3)*e 2*e *sin(3) -- - ------------ - ------------ 13 13 13
Use the examples entering the upper and lower limits of integration.