Mister Exam

Other calculators


e^(-2x)*sin(3x)

Integral of e^(-2x)*sin(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   -2*x            
 |  e    *sin(3*x) dx
 |                   
/                    
0                    
01e2xsin(3x)dx\int\limits_{0}^{1} e^{- 2 x} \sin{\left(3 x \right)}\, dx
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand e2xsin(3x)e^{- 2 x} \sin{\left(3 x \right)}:

      Let u(x)=sin(3x)u{\left(x \right)} = \sin{\left(3 x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{- 2 x}.

      Then e2xsin(3x)dx=(3e2xcos(3x)2)dxe2xsin(3x)2\int e^{- 2 x} \sin{\left(3 x \right)}\, dx = - \int \left(- \frac{3 e^{- 2 x} \cos{\left(3 x \right)}}{2}\right)\, dx - \frac{e^{- 2 x} \sin{\left(3 x \right)}}{2}.

    2. For the integrand 3e2xcos(3x)2- \frac{3 e^{- 2 x} \cos{\left(3 x \right)}}{2}:

      Let u(x)=3cos(3x)2u{\left(x \right)} = - \frac{3 \cos{\left(3 x \right)}}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{- 2 x}.

      Then e2xsin(3x)dx=(9e2xsin(3x)4)dxe2xsin(3x)23e2xcos(3x)4\int e^{- 2 x} \sin{\left(3 x \right)}\, dx = \int \left(- \frac{9 e^{- 2 x} \sin{\left(3 x \right)}}{4}\right)\, dx - \frac{e^{- 2 x} \sin{\left(3 x \right)}}{2} - \frac{3 e^{- 2 x} \cos{\left(3 x \right)}}{4}.

    3. Notice that the integrand has repeated itself, so move it to one side:

      13e2xsin(3x)dx4=e2xsin(3x)23e2xcos(3x)4\frac{13 \int e^{- 2 x} \sin{\left(3 x \right)}\, dx}{4} = - \frac{e^{- 2 x} \sin{\left(3 x \right)}}{2} - \frac{3 e^{- 2 x} \cos{\left(3 x \right)}}{4}

      Therefore,

      e2xsin(3x)dx=2e2xsin(3x)133e2xcos(3x)13\int e^{- 2 x} \sin{\left(3 x \right)}\, dx = - \frac{2 e^{- 2 x} \sin{\left(3 x \right)}}{13} - \frac{3 e^{- 2 x} \cos{\left(3 x \right)}}{13}

  2. Now simplify:

    (2sin(3x)+3cos(3x))e2x13- \frac{\left(2 \sin{\left(3 x \right)} + 3 \cos{\left(3 x \right)}\right) e^{- 2 x}}{13}

  3. Add the constant of integration:

    (2sin(3x)+3cos(3x))e2x13+constant- \frac{\left(2 \sin{\left(3 x \right)} + 3 \cos{\left(3 x \right)}\right) e^{- 2 x}}{13}+ \mathrm{constant}


The answer is:

(2sin(3x)+3cos(3x))e2x13+constant- \frac{\left(2 \sin{\left(3 x \right)} + 3 \cos{\left(3 x \right)}\right) e^{- 2 x}}{13}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                           
 |                                     -2*x      -2*x         
 |  -2*x                   3*cos(3*x)*e       2*e    *sin(3*x)
 | e    *sin(3*x) dx = C - ---------------- - ----------------
 |                                13                 13       
/                                                             
e2x(2sin(3x)3cos(3x))13{{e^ {- 2\,x }\,\left(-2\,\sin \left(3\,x\right)-3\,\cos \left(3\,x \right)\right)}\over{13}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
               -2      -2       
3    3*cos(3)*e     2*e  *sin(3)
-- - ------------ - ------------
13        13             13     
313e2(2sin3+3cos3)13{{3}\over{13}}-{{e^ {- 2 }\,\left(2\,\sin 3+3\,\cos 3\right)}\over{ 13}}
=
=
               -2      -2       
3    3*cos(3)*e     2*e  *sin(3)
-- - ------------ - ------------
13        13             13     
2sin(3)13e23cos(3)13e2+313- \frac{2 \sin{\left(3 \right)}}{13 e^{2}} - \frac{3 \cos{\left(3 \right)}}{13 e^{2}} + \frac{3}{13}
Numerical answer [src]
0.258749670174335
0.258749670174335
The graph
Integral of e^(-2x)*sin(3x) dx

    Use the examples entering the upper and lower limits of integration.