Mister Exam

Other calculators


e^(-10x)

Integral of e^(-10x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   -10*x   
 |  E      dx
 |           
/            
0            
$$\int\limits_{0}^{1} e^{- 10 x}\, dx$$
Integral(E^(-10*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                  -10*x
 |  -10*x          e     
 | E      dx = C - ------
 |                   10  
/                        
$$\int e^{- 10 x}\, dx = C - \frac{e^{- 10 x}}{10}$$
The graph
The answer [src]
      -10
1    e   
-- - ----
10    10 
$$\frac{1}{10} - \frac{1}{10 e^{10}}$$
=
=
      -10
1    e   
-- - ----
10    10 
$$\frac{1}{10} - \frac{1}{10 e^{10}}$$
1/10 - exp(-10)/10
Numerical answer [src]
0.0999954600070238
0.0999954600070238
The graph
Integral of e^(-10x) dx

    Use the examples entering the upper and lower limits of integration.