Mister Exam

Other calculators

Integral of e^4^xcos2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   / x\            
 |   \4 /            
 |  E    *cos(2*x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} e^{4^{x}} \cos{\left(2 x \right)}\, dx$$
Integral(E^(4^x)*cos(2*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                          /                 
 |                          |                  
 |  / x\                    |           / x\   
 |  \4 /                    |           \4 /   
 | E    *cos(2*x) dx = C +  | cos(2*x)*e     dx
 |                          |                  
/                          /                   
$$\int e^{4^{x}} \cos{\left(2 x \right)}\, dx = C + \int e^{4^{x}} \cos{\left(2 x \right)}\, dx$$
Numerical answer [src]
0.813387641456817
0.813387641456817

    Use the examples entering the upper and lower limits of integration.