Mister Exam

Other calculators


e^(5-2x)

Integral of e^(5-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   5 - 2*x   
 |  E        dx
 |             
/              
0              
01e52xdx\int\limits_{0}^{1} e^{5 - 2 x}\, dx
Integral(E^(5 - 2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=52xu = 5 - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e52x2- \frac{e^{5 - 2 x}}{2}

    Method #2

    1. Rewrite the integrand:

      e52x=e5e2xe^{5 - 2 x} = e^{5} e^{- 2 x}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e5e2xdx=e5e2xdx\int e^{5} e^{- 2 x}\, dx = e^{5} \int e^{- 2 x}\, dx

      1. Let u=2xu = - 2 x.

        Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

        (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2- \frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2- \frac{e^{- 2 x}}{2}

      So, the result is: e5e2x2- \frac{e^{5} e^{- 2 x}}{2}

    Method #3

    1. Rewrite the integrand:

      e52x=e5e2xe^{5 - 2 x} = e^{5} e^{- 2 x}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e5e2xdx=e5e2xdx\int e^{5} e^{- 2 x}\, dx = e^{5} \int e^{- 2 x}\, dx

      1. Let u=2xu = - 2 x.

        Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

        (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2- \frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2- \frac{e^{- 2 x}}{2}

      So, the result is: e5e2x2- \frac{e^{5} e^{- 2 x}}{2}

  2. Add the constant of integration:

    e52x2+constant- \frac{e^{5 - 2 x}}{2}+ \mathrm{constant}


The answer is:

e52x2+constant- \frac{e^{5 - 2 x}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                    5 - 2*x
 |  5 - 2*x          e       
 | E        dx = C - --------
 |                      2    
/                            
e52xdx=Ce52x2\int e^{5 - 2 x}\, dx = C - \frac{e^{5 - 2 x}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-250250
The answer [src]
 5    3
e    e 
-- - --
2    2 
e32+e52- \frac{e^{3}}{2} + \frac{e^{5}}{2}
=
=
 5    3
e    e 
-- - --
2    2 
e32+e52- \frac{e^{3}}{2} + \frac{e^{5}}{2}
exp(5)/2 - exp(3)/2
Numerical answer [src]
64.1638110896945
64.1638110896945
The graph
Integral of e^(5-2x) dx

    Use the examples entering the upper and lower limits of integration.