Integral of e^(5-2x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=5−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e5−2x
Method #2
-
Rewrite the integrand:
e5−2x=e5e−2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e5e−2xdx=e5∫e−2xdx
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
So, the result is: −2e5e−2x
Method #3
-
Rewrite the integrand:
e5−2x=e5e−2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e5e−2xdx=e5∫e−2xdx
-
Let u=−2x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2x
So, the result is: −2e5e−2x
-
Add the constant of integration:
−2e5−2x+constant
The answer is:
−2e5−2x+constant
The answer (Indefinite)
[src]
/
| 5 - 2*x
| 5 - 2*x e
| E dx = C - --------
| 2
/
∫e5−2xdx=C−2e5−2x
The graph
−2e3+2e5
=
−2e3+2e5
Use the examples entering the upper and lower limits of integration.