1 / | | cos(x) | E *cos(sin(x)) dx | / 0
Integral(E^cos(x)*cos(sin(x)), (x, 0, 1))
/ / | | | cos(x) | cos(x) | E *cos(sin(x)) dx = C + | cos(sin(x))*e dx | | / /
1 / | | cos(x) | cos(sin(x))*e dx | / 0
=
1 / | | cos(x) | cos(sin(x))*e dx | / 0
Integral(cos(sin(x))*exp(cos(x)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.