Mister Exam

Other calculators

Integral of e^cos*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi                 
   /                  
  |                   
  |   cos(E)          
  |  E      *sin(x) dx
  |                   
 /                    
 0                    
$$\int\limits_{0}^{2 \pi} \frac{\sin{\left(x \right)}}{e^{- \cos{\left(e \right)}}}\, dx$$
Integral(E^cos(E)*sin(x), (x, 0, 2*pi))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of sine is negative cosine:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 |  cos(E)                         cos(E)
 | E      *sin(x) dx = C - cos(x)*e      
 |                                       
/                                        
$$\int \frac{\sin{\left(x \right)}}{e^{- \cos{\left(e \right)}}}\, dx = C - \frac{\cos{\left(x \right)}}{e^{- \cos{\left(e \right)}}}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
3.1956484905076e-22
3.1956484905076e-22

    Use the examples entering the upper and lower limits of integration.