Mister Exam

Other calculators

Integral of e^(3x)/sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |    3*x    
 |   E       
 |  ------ dx
 |  sin(x)   
 |           
/            
-oo          
$$\int\limits_{-\infty}^{\infty} \frac{e^{3 x}}{\sin{\left(x \right)}}\, dx$$
Integral(E^(3*x)/sin(x), (x, -oo, oo))
The answer (Indefinite) [src]
  /                  /         
 |                  |          
 |   3*x            |   3*x    
 |  E               |  e       
 | ------ dx = C +  | ------ dx
 | sin(x)           | sin(x)   
 |                  |          
/                  /           
$$\int \frac{e^{3 x}}{\sin{\left(x \right)}}\, dx = C + \int \frac{e^{3 x}}{\sin{\left(x \right)}}\, dx$$
The answer [src]
 oo          
  /          
 |           
 |    3*x    
 |   e       
 |  ------ dx
 |  sin(x)   
 |           
/            
-oo          
$$\int\limits_{-\infty}^{\infty} \frac{e^{3 x}}{\sin{\left(x \right)}}\, dx$$
=
=
 oo          
  /          
 |           
 |    3*x    
 |   e       
 |  ------ dx
 |  sin(x)   
 |           
/            
-oo          
$$\int\limits_{-\infty}^{\infty} \frac{e^{3 x}}{\sin{\left(x \right)}}\, dx$$
Integral(exp(3*x)/sin(x), (x, -oo, oo))
Numerical answer [src]
2.6249951324807e+13000078344468995219
2.6249951324807e+13000078344468995219

    Use the examples entering the upper and lower limits of integration.