1 / | | 3*cos(x) | E *sin(x) dx | / 0
Integral(E^(3*cos(x))*sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3*cos(x) | 3*cos(x) e | E *sin(x) dx = C - --------- | 3 /
3*cos(1) 3 e e - --------- + -- 3 3
=
3*cos(1) 3 e e - --------- + -- 3 3
-exp(3*cos(1))/3 + exp(3)/3
Use the examples entering the upper and lower limits of integration.