Mister Exam

Other calculators

Integral of e^(3cosx)*sinxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |   3*cos(x)          
 |  E        *sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{3 \cos{\left(x \right)}} \sin{\left(x \right)}\, dx$$
Integral(E^(3*cos(x))*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                            3*cos(x)
 |  3*cos(x)                 e        
 | E        *sin(x) dx = C - ---------
 |                               3    
/                                     
$$\int e^{3 \cos{\left(x \right)}} \sin{\left(x \right)}\, dx = C - \frac{e^{3 \cos{\left(x \right)}}}{3}$$
The graph
The answer [src]
   3*cos(1)    3
  e           e 
- --------- + --
      3       3 
$$- \frac{e^{3 \cos{\left(1 \right)}}}{3} + \frac{e^{3}}{3}$$
=
=
   3*cos(1)    3
  e           e 
- --------- + --
      3       3 
$$- \frac{e^{3 \cos{\left(1 \right)}}}{3} + \frac{e^{3}}{3}$$
-exp(3*cos(1))/3 + exp(3)/3
Numerical answer [src]
5.0092872637828
5.0092872637828

    Use the examples entering the upper and lower limits of integration.