Mister Exam

Other calculators


e^(2x)*sin(x)

Integral of e^(2x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2*x          
 |  E   *sin(x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{2 x} \sin{\left(x \right)}\, dx$$
Integral(E^(2*x)*sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                              2*x      2*x       
 |  2*x                 cos(x)*e      2*e   *sin(x)
 | E   *sin(x) dx = C - ----------- + -------------
 |                           5              5      
/                                                  
$$\int e^{2 x} \sin{\left(x \right)}\, dx = C + \frac{2 e^{2 x} \sin{\left(x \right)}}{5} - \frac{e^{2 x} \cos{\left(x \right)}}{5}$$
The graph
The answer [src]
            2      2       
1   cos(1)*e    2*e *sin(1)
- - --------- + -----------
5       5            5     
$$- \frac{e^{2} \cos{\left(1 \right)}}{5} + \frac{1}{5} + \frac{2 e^{2} \sin{\left(1 \right)}}{5}$$
=
=
            2      2       
1   cos(1)*e    2*e *sin(1)
- - --------- + -----------
5       5            5     
$$- \frac{e^{2} \cos{\left(1 \right)}}{5} + \frac{1}{5} + \frac{2 e^{2} \sin{\left(1 \right)}}{5}$$
1/5 - cos(1)*exp(2)/5 + 2*exp(2)*sin(1)/5
Numerical answer [src]
1.88860571525893
1.88860571525893
The graph
Integral of e^(2x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.