Mister Exam

Other calculators

Integral of e^(2x)*cos(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1               
  /               
 |                
 |   2*x    /x\   
 |  E   *cos|-| dx
 |          \3/   
 |                
/                 
0                 
$$\int\limits_{0}^{-1} e^{2 x} \cos{\left(\frac{x}{3} \right)}\, dx$$
Integral(E^(2*x)*cos(x/3), (x, 0, -1))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |  2*x    /x\           |    /x\  2*x   
 | E   *cos|-| dx = C +  | cos|-|*e    dx
 |         \3/           |    \3/        
 |                       |               
/                       /                
$$\int e^{2 x} \cos{\left(\frac{x}{3} \right)}\, dx = C + \int e^{2 x} \cos{\left(\frac{x}{3} \right)}\, dx$$
The graph
The answer [src]
          -2                         -2
  18   3*e  *sin(1/3)   18*cos(1/3)*e  
- -- - -------------- + ---------------
  37         37                37      
$$- \frac{18}{37} - \frac{3 \sin{\left(\frac{1}{3} \right)}}{37 e^{2}} + \frac{18 \cos{\left(\frac{1}{3} \right)}}{37 e^{2}}$$
=
=
          -2                         -2
  18   3*e  *sin(1/3)   18*cos(1/3)*e  
- -- - -------------- + ---------------
  37         37                37      
$$- \frac{18}{37} - \frac{3 \sin{\left(\frac{1}{3} \right)}}{37 e^{2}} + \frac{18 \cos{\left(\frac{1}{3} \right)}}{37 e^{2}}$$
-18/37 - 3*exp(-2)*sin(1/3)/37 + 18*cos(1/3)*exp(-2)/37
Numerical answer [src]
-0.427862018198024
-0.427862018198024

    Use the examples entering the upper and lower limits of integration.