Integral of e^(2x)cosx dx
The solution
Detail solution
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e2xcos(x):
Let u(x)=cos(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=2e2xcos(x)−∫(−2e2xsin(x))dx.
-
For the integrand −2e2xsin(x):
Let u(x)=−2sin(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)+∫(−4e2xcos(x))dx.
-
Notice that the integrand has repeated itself, so move it to one side:
45∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)
Therefore,
∫e2xcos(x)dx=5e2xsin(x)+52e2xcos(x)
-
Now simplify:
5(sin(x)+2cos(x))e2x
-
Add the constant of integration:
5(sin(x)+2cos(x))e2x+constant
The answer is:
5(sin(x)+2cos(x))e2x+constant
The answer (Indefinite)
[src]
/
| 2*x 2*x
| 2*x e *sin(x) 2*cos(x)*e
| e *cos(x) dx = C + ----------- + -------------
| 5 5
/
5e2x(sinx+2cosx)
The graph
2 2
2 e *sin(1) 2*cos(1)*e
- - + --------- + -----------
5 5 5
5e2sin1+2e2cos1−52
=
2 2
2 e *sin(1) 2*cos(1)*e
- - + --------- + -----------
5 5 5
−52+5e2sin(1)+52e2cos(1)
Use the examples entering the upper and lower limits of integration.