Mister Exam

Other calculators


e^(2x)cosx

Integral of e^(2x)cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2*x          
 |  e   *cos(x) dx
 |                
/                 
0                 
01e2xcos(x)dx\int\limits_{0}^{1} e^{2 x} \cos{\left(x \right)}\, dx
Integral(E^(2*x)*cos(x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand e2xcos(x)e^{2 x} \cos{\left(x \right)}:

      Let u(x)=cos(x)u{\left(x \right)} = \cos{\left(x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x)dx=e2xcos(x)2(e2xsin(x)2)dx\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \cos{\left(x \right)}}{2} - \int \left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)\, dx.

    2. For the integrand e2xsin(x)2- \frac{e^{2 x} \sin{\left(x \right)}}{2}:

      Let u(x)=sin(x)2u{\left(x \right)} = - \frac{\sin{\left(x \right)}}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x)dx=e2xsin(x)4+e2xcos(x)2+(e2xcos(x)4)dx\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \sin{\left(x \right)}}{4} + \frac{e^{2 x} \cos{\left(x \right)}}{2} + \int \left(- \frac{e^{2 x} \cos{\left(x \right)}}{4}\right)\, dx.

    3. Notice that the integrand has repeated itself, so move it to one side:

      5e2xcos(x)dx4=e2xsin(x)4+e2xcos(x)2\frac{5 \int e^{2 x} \cos{\left(x \right)}\, dx}{4} = \frac{e^{2 x} \sin{\left(x \right)}}{4} + \frac{e^{2 x} \cos{\left(x \right)}}{2}

      Therefore,

      e2xcos(x)dx=e2xsin(x)5+2e2xcos(x)5\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \sin{\left(x \right)}}{5} + \frac{2 e^{2 x} \cos{\left(x \right)}}{5}

  2. Now simplify:

    (sin(x)+2cos(x))e2x5\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}

  3. Add the constant of integration:

    (sin(x)+2cos(x))e2x5+constant\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}+ \mathrm{constant}


The answer is:

(sin(x)+2cos(x))e2x5+constant\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                
 |                       2*x                    2*x
 |  2*x                 e   *sin(x)   2*cos(x)*e   
 | e   *cos(x) dx = C + ----------- + -------------
 |                           5              5      
/                                                  
e2x(sinx+2cosx)5{{e^{2\,x}\,\left(\sin x+2\,\cos x\right)}\over{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
       2                    2
  2   e *sin(1)   2*cos(1)*e 
- - + --------- + -----------
  5       5            5     
e2sin1+2e2cos1525{{e^2\,\sin 1+2\,e^2\,\cos 1}\over{5}}-{{2}\over{5}}
=
=
       2                    2
  2   e *sin(1)   2*cos(1)*e 
- - + --------- + -----------
  5       5            5     
25+e2sin(1)5+2e2cos(1)5- \frac{2}{5} + \frac{e^{2} \sin{\left(1 \right)}}{5} + \frac{2 e^{2} \cos{\left(1 \right)}}{5}
Numerical answer [src]
2.4404648818501
2.4404648818501
The graph
Integral of e^(2x)cosx dx

    Use the examples entering the upper and lower limits of integration.