Mister Exam

Other calculators

Integral of e^2xsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2            
 |  E *x*sin(x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{2} x \sin{\left(x \right)}\, dx$$
Integral((E^2*x)*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of cosine is sine:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 |  2                    2                    2
 | E *x*sin(x) dx = C + e *sin(x) - x*cos(x)*e 
 |                                             
/                                              
$$\int e^{2} x \sin{\left(x \right)}\, dx = C - x e^{2} \cos{\left(x \right)} + e^{2} \sin{\left(x \right)}$$
The graph
The answer [src]
                    2
(-cos(1) + sin(1))*e 
$$\left(- \cos{\left(1 \right)} + \sin{\left(1 \right)}\right) e^{2}$$
=
=
                    2
(-cos(1) + sin(1))*e 
$$\left(- \cos{\left(1 \right)} + \sin{\left(1 \right)}\right) e^{2}$$
(-cos(1) + sin(1))*exp(2)
Numerical answer [src]
2.2253522639267
2.2253522639267

    Use the examples entering the upper and lower limits of integration.