Mister Exam

You entered:

e^3xsen2xdx

What you mean?

Integral of e^3xsen2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |   3                
 |  e *x*sin(2*x)*1 dx
 |                    
/                     
0                     
01e3xsin(2x)1dx\int\limits_{0}^{1} e^{3} x \sin{\left(2 x \right)} 1\, dx
Integral(E^3*x*sin(2*x)*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    e3xsin(2x)1dx=e3xsin(2x)dx\int e^{3} x \sin{\left(2 x \right)} 1\, dx = e^{3} \int x \sin{\left(2 x \right)}\, dx

    1. There are multiple ways to do this integral.

      Method #1

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(2 x \right)}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)2du=sin(u)du2\int \frac{\sin{\left(u \right)}}{2}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

            Now substitute uu back in:

            cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

          Method #2

          1. The integral of a constant times a function is the constant times the integral of the function:

            2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              udu\int u\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u)du=udu\int \left(- u\right)\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

            So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

      Method #2

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xsin(x)cos(x)dx=2xsin(x)cos(x)dx\int 2 x \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int x \sin{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)cos(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            udu\int u\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u)du=udu\int \left(- u\right)\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          (cos2(x)2)dx=cos2(x)dx2\int \left(- \frac{\cos^{2}{\left(x \right)}}{2}\right)\, dx = - \frac{\int \cos^{2}{\left(x \right)}\, dx}{2}

          1. Rewrite the integrand:

            cos2(x)=cos(2x)2+12\cos^{2}{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

              1. Let u=2xu = 2 x.

                Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

              So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(2x)4\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

          So, the result is: x4sin(2x)8- \frac{x}{4} - \frac{\sin{\left(2 x \right)}}{8}

        So, the result is: xcos2(x)+x2+sin(2x)4- x \cos^{2}{\left(x \right)} + \frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

    So, the result is: (xcos(2x)2+sin(2x)4)e3\left(- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4}\right) e^{3}

  2. Now simplify:

    (2xcos(2x)+sin(2x))e34\frac{\left(- 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right) e^{3}}{4}

  3. Add the constant of integration:

    (2xcos(2x)+sin(2x))e34+constant\frac{\left(- 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right) e^{3}}{4}+ \mathrm{constant}


The answer is:

(2xcos(2x)+sin(2x))e34+constant\frac{\left(- 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right) e^{3}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |  3                       /sin(2*x)   x*cos(2*x)\  3
 | e *x*sin(2*x)*1 dx = C + |-------- - ----------|*e 
 |                          \   4           2     /   
/                                                     
e3xsin(2x)1dx=C+(xcos(2x)2+sin(2x)4)e3\int e^{3} x \sin{\left(2 x \right)} 1\, dx = C + \left(- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4}\right) e^{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
/  cos(2)   sin(2)\  3
|- ------ + ------|*e 
\    2        4   /   
(cos(2)2+sin(2)4)e3\left(- \frac{\cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)}}{4}\right) e^{3}
=
=
/  cos(2)   sin(2)\  3
|- ------ + ------|*e 
\    2        4   /   
(cos(2)2+sin(2)4)e3\left(- \frac{\cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)}}{4}\right) e^{3}
Numerical answer [src]
8.74519808563438
8.74519808563438
The graph
Integral of e^3xsen2xdx dx

    Use the examples entering the upper and lower limits of integration.