Mister Exam

Other calculators

Integral of dz/z(z^2+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1                 
    /                 
   |                  
   |     1 / 2    \   
   |   1*-*\z  + 4/ dz
   |     z            
   |                  
  /                   
-1 + z                
$$\int\limits_{z - 1}^{1} 1 \cdot \frac{1}{z} \left(z^{2} + 4\right)\, dz$$
Integral(1*(z^2 + 4)/z, (z, -1 + z, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          The result is:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                        2            
 |   1 / 2    \          z         / 2\
 | 1*-*\z  + 4/ dz = C + -- + 2*log\z /
 |   z                   2             
 |                                     
/                                      
$$\int 1 \cdot \frac{1}{z} \left(z^{2} + 4\right)\, dz = C + \frac{z^{2}}{2} + 2 \log{\left(z^{2} \right)}$$
The answer [src]
                            2
1                   (-1 + z) 
- - 4*log(-1 + z) - ---------
2                       2    
$$- \frac{\left(z - 1\right)^{2}}{2} - 4 \log{\left(z - 1 \right)} + \frac{1}{2}$$
=
=
                            2
1                   (-1 + z) 
- - 4*log(-1 + z) - ---------
2                       2    
$$- \frac{\left(z - 1\right)^{2}}{2} - 4 \log{\left(z - 1 \right)} + \frac{1}{2}$$

    Use the examples entering the upper and lower limits of integration.