Mister Exam

Other calculators

Integral of dy/(y^2-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dy
 |   2       
 |  y  - 2   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{y^{2} - 2}\, dy$$
Integral(1/(y^2 - 2), (y, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-2, context=1/(y**2 - 2), symbol=y), False), (ArccothRule(a=1, b=1, c=-2, context=1/(y**2 - 2), symbol=y), y**2 > 2), (ArctanhRule(a=1, b=1, c=-2, context=1/(y**2 - 2), symbol=y), y**2 < 2)], context=1/(y**2 - 2), symbol=y)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                   //            /    ___\             \
                   ||   ___      |y*\/ 2 |             |
                   ||-\/ 2 *acoth|-------|             |
  /                ||            \   2   /        2    |
 |                 ||----------------------  for y  > 2|
 |   1             ||          2                       |
 | ------ dy = C + |<                                  |
 |  2              ||            /    ___\             |
 | y  - 2          ||   ___      |y*\/ 2 |             |
 |                 ||-\/ 2 *atanh|-------|             |
/                  ||            \   2   /        2    |
                   ||----------------------  for y  < 2|
                   \\          2                       /
$$\int \frac{1}{y^{2} - 2}\, dy = C + \begin{cases} - \frac{\sqrt{2} \operatorname{acoth}{\left(\frac{\sqrt{2} y}{2} \right)}}{2} & \text{for}\: y^{2} > 2 \\- \frac{\sqrt{2} \operatorname{atanh}{\left(\frac{\sqrt{2} y}{2} \right)}}{2} & \text{for}\: y^{2} < 2 \end{cases}$$
The graph
The answer [src]
    ___ /          /  ___\\     ___    /      ___\     ___ /          /       ___\\     ___    /  ___\
  \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /   \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
              4                        4                           4                         4        
$$- \frac{\sqrt{2} \log{\left(1 + \sqrt{2} \right)}}{4} + \frac{\sqrt{2} \log{\left(\sqrt{2} \right)}}{4} - \frac{\sqrt{2} \left(\log{\left(\sqrt{2} \right)} + i \pi\right)}{4} + \frac{\sqrt{2} \left(\log{\left(-1 + \sqrt{2} \right)} + i \pi\right)}{4}$$
=
=
    ___ /          /  ___\\     ___    /      ___\     ___ /          /       ___\\     ___    /  ___\
  \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /   \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /
- ------------------------- - -------------------- + ------------------------------ + ----------------
              4                        4                           4                         4        
$$- \frac{\sqrt{2} \log{\left(1 + \sqrt{2} \right)}}{4} + \frac{\sqrt{2} \log{\left(\sqrt{2} \right)}}{4} - \frac{\sqrt{2} \left(\log{\left(\sqrt{2} \right)} + i \pi\right)}{4} + \frac{\sqrt{2} \left(\log{\left(-1 + \sqrt{2} \right)} + i \pi\right)}{4}$$
-sqrt(2)*(pi*i + log(sqrt(2)))/4 - sqrt(2)*log(1 + sqrt(2))/4 + sqrt(2)*(pi*i + log(-1 + sqrt(2)))/4 + sqrt(2)*log(sqrt(2))/4
Numerical answer [src]
-0.623225240140231
-0.623225240140231

    Use the examples entering the upper and lower limits of integration.