Integral of dx/xln^5*x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−ulog(u1)5)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u1)5du=−∫ulog(u1)5du
-
Let u=log(u1).
Then let du=−udu and substitute −du:
∫(−u5)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u5du=−∫u5du
-
The integral of un is n+1un+1 when n=−1:
∫u5du=6u6
So, the result is: −6u6
Now substitute u back in:
−6log(u1)6
So, the result is: 6log(u1)6
Now substitute u back in:
6log(x)6
Method #2
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u5du
-
The integral of un is n+1un+1 when n=−1:
∫u5du=6u6
Now substitute u back in:
6log(x)6
-
Add the constant of integration:
6log(x)6+constant
The answer is:
6log(x)6+constant
The answer (Indefinite)
[src]
/
|
| 5 6
| log (x) log (x)
| ------- dx = C + -------
| x 6
|
/
∫xlog(x)5dx=C+6log(x)6
The graph
Use the examples entering the upper and lower limits of integration.