Mister Exam

Other calculators


dx/(x^2+12x+45)

Integral of dx/(x^2+12x+45) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |          1          
 |  1*-------------- dx
 |     2               
 |    x  + 12*x + 45   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x^{2} + 12 x + 45}\, dx$$
Integral(1/(x^2 + 12*x + 45), (x, 0, 1))
Detail solution
We have the integral:
  /                     
 |                      
 |           1          
 | 1*1*-------------- dx
 |      2               
 |     x  + 12*x + 45   
 |                      
/                       
Rewrite the integrand
        1                  1         
1*-------------- = ------------------
   2                 /         2    \
  x  + 12*x + 45     |/  x    \     |
                   9*||- - - 2|  + 1|
                     \\  3    /     /
or
  /                       
 |                        
 |           1            
 | 1*1*-------------- dx  
 |      2                =
 |     x  + 12*x + 45     
 |                        
/                         
  
  /                 
 |                  
 |       1          
 | -------------- dx
 |          2       
 | /  x    \        
 | |- - - 2|  + 1   
 | \  3    /        
 |                  
/                   
--------------------
         9          
In the integral
  /                 
 |                  
 |       1          
 | -------------- dx
 |          2       
 | /  x    \        
 | |- - - 2|  + 1   
 | \  3    /        
 |                  
/                   
--------------------
         9          
do replacement
         x
v = -2 - -
         3
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     9            9   
do backward replacement
  /                               
 |                                
 |       1                        
 | -------------- dx              
 |          2                     
 | /  x    \                      
 | |- - - 2|  + 1                 
 | \  3    /               /    x\
 |                     atan|2 + -|
/                          \    3/
-------------------- = -----------
         9                  3     
Solution is:
        /    x\
    atan|2 + -|
        \    3/
C + -----------
         3     
The answer (Indefinite) [src]
  /                              /    x\
 |                           atan|2 + -|
 |         1                     \    3/
 | 1*-------------- dx = C + -----------
 |    2                           3     
 |   x  + 12*x + 45                     
 |                                      
/                                       
$${{\arctan \left({{2\,x+12}\over{6}}\right)}\over{3}}$$
The graph
The answer [src]
  atan(2)   atan(7/3)
- ------- + ---------
     3          3    
$${{\arctan \left({{7}\over{3}}\right)}\over{3}}-{{\arctan 2}\over{3 }}$$
=
=
  atan(2)   atan(7/3)
- ------- + ---------
     3          3    
$$- \frac{\operatorname{atan}{\left(2 \right)}}{3} + \frac{\operatorname{atan}{\left(\frac{7}{3} \right)}}{3}$$
Numerical answer [src]
0.0195852742385742
0.0195852742385742
The graph
Integral of dx/(x^2+12x+45) dx

    Use the examples entering the upper and lower limits of integration.