Mister Exam

Other calculators

Integral of dx/(xsqrt(3-ln^2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |            1            
 |  1*------------------ dx
 |         _____________   
 |        /        2       
 |    x*\/  3 - log (x)    
 |                         
/                          
0                          
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \sqrt{- \log{\left(x \right)}^{2} + 3}}\, dx$$
Integral(1/(x*sqrt(3 - log(x)^2)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                /                     
 |                                |                      
 |           1                    |         1            
 | 1*------------------ dx = C +  | ------------------ dx
 |        _____________           |      _____________   
 |       /        2               |     /        2       
 |   x*\/  3 - log (x)            | x*\/  3 - log (x)    
 |                                |                      
/                                /                       
$$\arcsin \left({{\log x}\over{\sqrt{3}}}\right)$$
The answer [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  3 - log (x)    
 |                       
/                        
0                        
$${\it \%a}$$
=
=
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  3 - log (x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{- \log{\left(x \right)}^{2} + 3}}\, dx$$
Numerical answer [src]
(1.64196762141758 - 3.79335385016804j)
(1.64196762141758 - 3.79335385016804j)

    Use the examples entering the upper and lower limits of integration.