Mister Exam

Other calculators

Integral of (dx)/(x+(√x+6)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |        ___       
 |  x + \/ x  + 6   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{x + \left(\sqrt{x} + 6\right)}\, dx$$
Integral(1/(x + sqrt(x) + 6), (x, 0, 1))
The answer (Indefinite) [src]
                                       /    ____ /1     ___\\                     
                                       |2*\/ 23 *|- + \/ x ||                     
  /                           ____     |         \2        /|                     
 |                        2*\/ 23 *atan|--------------------|                     
 |       1                             \         23         /      /          ___\
 | ------------- dx = C - ----------------------------------- + log\6 + x + \/ x /
 |       ___                               23                                     
 | x + \/ x  + 6                                                                  
 |                                                                                
/                                                                                 
$$\int \frac{1}{x + \left(\sqrt{x} + 6\right)}\, dx = C + \log{\left(\sqrt{x} + x + 6 \right)} - \frac{2 \sqrt{23} \operatorname{atan}{\left(\frac{2 \sqrt{23} \left(\sqrt{x} + \frac{1}{2}\right)}{23} \right)}}{23}$$
The graph
The answer [src]
                        /    ____\                /  ____\          
               ____     |3*\/ 23 |       ____     |\/ 23 |          
           2*\/ 23 *atan|--------|   2*\/ 23 *atan|------|          
                        \   23   /                \  23  /          
-log(24) - ----------------------- + --------------------- + log(32)
                      23                       23                   
$$- \log{\left(24 \right)} - \frac{2 \sqrt{23} \operatorname{atan}{\left(\frac{3 \sqrt{23}}{23} \right)}}{23} + \frac{2 \sqrt{23} \operatorname{atan}{\left(\frac{\sqrt{23}}{23} \right)}}{23} + \log{\left(32 \right)}$$
=
=
                        /    ____\                /  ____\          
               ____     |3*\/ 23 |       ____     |\/ 23 |          
           2*\/ 23 *atan|--------|   2*\/ 23 *atan|------|          
                        \   23   /                \  23  /          
-log(24) - ----------------------- + --------------------- + log(32)
                      23                       23                   
$$- \log{\left(24 \right)} - \frac{2 \sqrt{23} \operatorname{atan}{\left(\frac{3 \sqrt{23}}{23} \right)}}{23} + \frac{2 \sqrt{23} \operatorname{atan}{\left(\frac{\sqrt{23}}{23} \right)}}{23} + \log{\left(32 \right)}$$
-log(24) - 2*sqrt(23)*atan(3*sqrt(23)/23)/23 + 2*sqrt(23)*atan(sqrt(23)/23)/23 + log(32)
Numerical answer [src]
0.140295354154518
0.140295354154518

    Use the examples entering the upper and lower limits of integration.