Mister Exam

Other calculators

Integral of dx/(x*(1+(lnx^2))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                   
 e                    
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    /       2   \   
 |  x*\1 + log (x)/   
 |                    
/                     
1                     
$$\int\limits_{1}^{e^{x}} \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx$$
Integral(1/(x*(1 + log(x)^2)), (x, 1, exp(x)))
The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |        1                        /   2                              \
 | --------------- dx = C + RootSum\4*z  + 1, i -> i*log(2*i + log(x))/
 |   /       2   \                                                     
 | x*\1 + log (x)/                                                     
 |                                                                     
/                                                                      
$$\int \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx = C + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}$$
The answer [src]
         /   2                     \          /   2                /         / x\\\
- RootSum\4*z  + 1, i -> i*log(2*i)/ + RootSum\4*z  + 1, i -> i*log\2*i + log\e ///
$$- \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i \right)} \right)\right)} + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(e^{x} \right)} \right)} \right)\right)}$$
=
=
         /   2                     \          /   2                /         / x\\\
- RootSum\4*z  + 1, i -> i*log(2*i)/ + RootSum\4*z  + 1, i -> i*log\2*i + log\e ///
$$- \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i \right)} \right)\right)} + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(e^{x} \right)} \right)} \right)\right)}$$
-RootSum(4*_z^2 + 1, Lambda(_i, _i*log(2*_i))) + RootSum(4*_z^2 + 1, Lambda(_i, _i*log(2*_i + log(exp(x)))))

    Use the examples entering the upper and lower limits of integration.