Integral of dx/(x*(1+(lnx^2))) dx
The solution
The answer (Indefinite)
[src]
/
|
| 1 / 2 \
| --------------- dx = C + RootSum\4*z + 1, i -> i*log(2*i + log(x))/
| / 2 \
| x*\1 + log (x)/
|
/
$$\int \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx = C + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}$$
/ 2 \ / 2 / / x\\\
- RootSum\4*z + 1, i -> i*log(2*i)/ + RootSum\4*z + 1, i -> i*log\2*i + log\e ///
$$- \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i \right)} \right)\right)} + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(e^{x} \right)} \right)} \right)\right)}$$
=
/ 2 \ / 2 / / x\\\
- RootSum\4*z + 1, i -> i*log(2*i)/ + RootSum\4*z + 1, i -> i*log\2*i + log\e ///
$$- \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i \right)} \right)\right)} + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(e^{x} \right)} \right)} \right)\right)}$$
-RootSum(4*_z^2 + 1, Lambda(_i, _i*log(2*_i))) + RootSum(4*_z^2 + 1, Lambda(_i, _i*log(2*_i + log(exp(x)))))
Use the examples entering the upper and lower limits of integration.