Mister Exam

Other calculators

Integral of dx/(3x-2)^1/3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |  3 _________   
 |  \/ 3*x - 2    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{\sqrt[3]{3 x - 2}}\, dx$$
Integral(1/((3*x - 2)^(1/3)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               2/3
 |      1               (3*x - 2)   
 | ----------- dx = C + ------------
 | 3 _________               2      
 | \/ 3*x - 2                       
 |                                  
/                                   
$$\int \frac{1}{\sqrt[3]{3 x - 2}}\, dx = C + \frac{\left(3 x - 2\right)^{\frac{2}{3}}}{2}$$
The graph
The answer [src]
        2/3
1   (-2)   
- - -------
2      2   
$$\frac{1}{2} - \frac{\left(-2\right)^{\frac{2}{3}}}{2}$$
=
=
        2/3
1   (-2)   
- - -------
2      2   
$$\frac{1}{2} - \frac{\left(-2\right)^{\frac{2}{3}}}{2}$$
1/2 - (-2)^(2/3)/2
Numerical answer [src]
(0.931192485524267 - 0.804542879268542j)
(0.931192485524267 - 0.804542879268542j)

    Use the examples entering the upper and lower limits of integration.