Mister Exam

Other calculators


dx/sqrt(2*(x^2)-16*x+137)
  • How to use it?

  • Integral of d{x}:
  • Integral of x^2/x Integral of x^2/x
  • Integral of (2x+3)/(x^2-5x+6) Integral of (2x+3)/(x^2-5x+6)
  • Integral of 1/(x^2-5x+6) Integral of 1/(x^2-5x+6)
  • Integral of x^5*dx Integral of x^5*dx
  • Identical expressions

  • dx/sqrt(two *(x^ two)- sixteen *x+ one hundred and thirty-seven)
  • dx divide by square root of (2 multiply by (x squared ) minus 16 multiply by x plus 137)
  • dx divide by square root of (two multiply by (x to the power of two) minus sixteen multiply by x plus one hundred and thirty minus seven)
  • dx/√(2*(x^2)-16*x+137)
  • dx/sqrt(2*(x2)-16*x+137)
  • dx/sqrt2*x2-16*x+137
  • dx/sqrt(2*(x²)-16*x+137)
  • dx/sqrt(2*(x to the power of 2)-16*x+137)
  • dx/sqrt(2(x^2)-16x+137)
  • dx/sqrt(2(x2)-16x+137)
  • dx/sqrt2x2-16x+137
  • dx/sqrt2x^2-16x+137
  • dx divide by sqrt(2*(x^2)-16*x+137)
  • Similar expressions

  • dx/sqrt(2*(x^2)+16*x+137)
  • dx/sqrt(2*(x^2)-16*x-137)

Integral of dx/sqrt(2*(x^2)-16*x+137) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |              1              
 |  1*---------------------- dx
 |       ___________________   
 |      /    2                 
 |    \/  2*x  - 16*x + 137    
 |                             
/                              
0                              
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{2 x^{2} - 16 x + 137}}\, dx$$
Integral(1/sqrt(2*x^2 - 16*x + 137), (x, 0, 1))
The answer (Indefinite) [src]
$${{{\rm asinh}\; \left({{4\,x-16}\over{2\,\sqrt{210}}}\right)}\over{ \sqrt{2}}}$$
The graph
The answer [src]
           /    _____\              /  _____\
  ___      |4*\/ 210 |     ___      |\/ 210 |
\/ 2 *asinh|---------|   \/ 2 *asinh|-------|
           \   105   /              \   35  /
---------------------- - --------------------
          2                       2          
$${{{\rm asinh}\; \left({{4\,\sqrt{210}}\over{105}}\right)}\over{ \sqrt{2}}}-{{{\rm asinh}\; \left({{\sqrt{210}}\over{35}}\right) }\over{\sqrt{2}}}$$
=
=
           /    _____\              /  _____\
  ___      |4*\/ 210 |     ___      |\/ 210 |
\/ 2 *asinh|---------|   \/ 2 *asinh|-------|
           \   105   /              \   35  /
---------------------- - --------------------
          2                       2          
$$- \frac{\sqrt{2} \operatorname{asinh}{\left(\frac{\sqrt{210}}{35} \right)}}{2} + \frac{\sqrt{2} \operatorname{asinh}{\left(\frac{4 \sqrt{210}}{105} \right)}}{2}$$
Numerical answer [src]
0.0878504556525425
0.0878504556525425
The graph
Integral of dx/sqrt(2*(x^2)-16*x+137) dx

    Use the examples entering the upper and lower limits of integration.