Integral of dx/sqrt(1-8x^2) dx
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=sqrt(2)*sin(_theta)/4, rewritten=sqrt(2)/4, substep=ConstantRule(constant=sqrt(2)/4, context=sqrt(2)/4, symbol=_theta), restriction=(x > -sqrt(2)/4) & (x < sqrt(2)/4), context=1/(sqrt(1 - 8*x**2)), symbol=x)
-
Add the constant of integration:
{42asin(22x)forx>−42∧x<42+constant
The answer is:
{42asin(22x)forx>−42∧x<42+constant
The answer (Indefinite)
[src]
/
| // ___ / ___\ / ___ ___\\
| 1 ||\/ 2 *asin\2*x*\/ 2 / | -\/ 2 \/ 2 ||
| ------------- dx = C + |<--------------------- for And|x > -------, x < -----||
| __________ || 4 \ 4 4 /|
| / 2 \\ /
| \/ 1 - 8*x
|
/
∫1−8x21dx=C+{42asin(22x)forx>−42∧x<42
The graph
___ / ___\
\/ 2 *asin\2*\/ 2 /
-------------------
4
42asin(22)
=
___ / ___\
\/ 2 *asin\2*\/ 2 /
-------------------
4
42asin(22)
sqrt(2)*asin(2*sqrt(2))/4
(0.503887140518608 - 0.619511988515451j)
(0.503887140518608 - 0.619511988515451j)
Use the examples entering the upper and lower limits of integration.