1 / | | 1 | ------------- dx | __________ | / 2 | \/ 1 - 8*x | / 0
Integral(1/(sqrt(1 - 8*x^2)), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(2)*sin(_theta)/4, rewritten=sqrt(2)/4, substep=ConstantRule(constant=sqrt(2)/4, context=sqrt(2)/4, symbol=_theta), restriction=(x > -sqrt(2)/4) & (x < sqrt(2)/4), context=1/(sqrt(1 - 8*x**2)), symbol=x)
Add the constant of integration:
The answer is:
/ | // ___ / ___\ / ___ ___\\ | 1 ||\/ 2 *asin\2*x*\/ 2 / | -\/ 2 \/ 2 || | ------------- dx = C + |<--------------------- for And|x > -------, x < -----|| | __________ || 4 \ 4 4 /| | / 2 \\ / | \/ 1 - 8*x | /
___ / ___\
\/ 2 *asin\2*\/ 2 /
-------------------
4
=
___ / ___\
\/ 2 *asin\2*\/ 2 /
-------------------
4
sqrt(2)*asin(2*sqrt(2))/4
(0.503887140518608 - 0.619511988515451j)
(0.503887140518608 - 0.619511988515451j)
Use the examples entering the upper and lower limits of integration.