Mister Exam

Other calculators


dx/sqrt(196-x^2)

Integral of dx/sqrt(196-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |          1         
 |  1*------------- dx
 |       __________   
 |      /        2    
 |    \/  196 - x     
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{196 - x^{2}}}\, dx$$
Integral(1/sqrt(196 - x^2), (x, 0, 1))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=14*sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -14) & (x < 14), context=1/sqrt(196 - x**2), symbol=x)

  1. Now simplify:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                                               
 |         1                //    /x \                          \
 | 1*------------- dx = C + | -14, x < 14)|
 |      __________          \\    \14/                          /
 |     /        2                                                
 |   \/  196 - x                                                 
 |                                                               
/                                                                
$$\int 1 \cdot \frac{1}{\sqrt{196 - x^{2}}}\, dx = C + \begin{cases} \operatorname{asin}{\left(\frac{x}{14} \right)} & \text{for}\: x > -14 \wedge x < 14 \end{cases}$$
The graph
The answer [src]
asin(1/14)
$$\operatorname{asin}{\left(\frac{1}{14} \right)}$$
=
=
asin(1/14)
$$\operatorname{asin}{\left(\frac{1}{14} \right)}$$
Numerical answer [src]
0.0714894498855205
0.0714894498855205
The graph
Integral of dx/sqrt(196-x^2) dx

    Use the examples entering the upper and lower limits of integration.