1 / | | 1 | ------------- dx | __________ | / 2 | \/ 4 - 5*x | / 0
Integral(1/(sqrt(4 - 5*x^2)), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=2*sqrt(5)*sin(_theta)/5, rewritten=sqrt(5)/5, substep=ConstantRule(constant=sqrt(5)/5, context=sqrt(5)/5, symbol=_theta), restriction=(x > -2*sqrt(5)/5) & (x < 2*sqrt(5)/5), context=1/(sqrt(4 - 5*x**2)), symbol=x)
Add the constant of integration:
The answer is:
/ // / ___\ \ | || ___ |x*\/ 5 | | | 1 ||\/ 5 *asin|-------| / ___ ___\| | ------------- dx = C + |< \ 2 / | -2*\/ 5 2*\/ 5 || | __________ ||------------------- for And|x > --------, x < -------|| | / 2 || 5 \ 5 5 /| | \/ 4 - 5*x \\ / | /
/ ___\ ___ |\/ 5 | \/ 5 *asin|-----| \ 2 / ----------------- 5
=
/ ___\ ___ |\/ 5 | \/ 5 *asin|-----| \ 2 / ----------------- 5
sqrt(5)*asin(sqrt(5)/2)/5
(0.676056261612884 - 0.21818552482013j)
(0.676056261612884 - 0.21818552482013j)
Use the examples entering the upper and lower limits of integration.