Mister Exam

Other calculators

Integral of dx/(16+16x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |      1        
 |  ---------- dx
 |           2   
 |  16 + 16*x    
 |               
/                
-oo              
$$\int\limits_{-\infty}^{0} \frac{1}{16 x^{2} + 16}\, dx$$
Integral(1/(16 + 16*x^2), (x, -oo, 0))
Detail solution
We have the integral:
  /             
 |              
 |     1        
 | ---------- dx
 |          2   
 | 16 + 16*x    
 |              
/               
Rewrite the integrand
    1              1       
---------- = --------------
         2      /    2    \
16 + 16*x    16*\(-x)  + 1/
or
  /               
 |                
 |     1          
 | ---------- dx  
 |          2    =
 | 16 + 16*x      
 |                
/                 
  
  /            
 |             
 |     1       
 | --------- dx
 |     2       
 | (-x)  + 1   
 |             
/              
---------------
       16      
In the integral
  /            
 |             
 |     1       
 | --------- dx
 |     2       
 | (-x)  + 1   
 |             
/              
---------------
       16      
do replacement
v = -x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     16           16  
do backward replacement
  /                      
 |                       
 |     1                 
 | --------- dx          
 |     2                 
 | (-x)  + 1             
 |                       
/                 atan(x)
--------------- = -------
       16            16  
Solution is:
    atan(x)
C + -------
       16  
The answer (Indefinite) [src]
  /                           
 |                            
 |     1               atan(x)
 | ---------- dx = C + -------
 |          2             16  
 | 16 + 16*x                  
 |                            
/                             
$$\int \frac{1}{16 x^{2} + 16}\, dx = C + \frac{\operatorname{atan}{\left(x \right)}}{16}$$
The graph
The answer [src]
pi
--
32
$$\frac{\pi}{32}$$
=
=
pi
--
32
$$\frac{\pi}{32}$$
pi/32

    Use the examples entering the upper and lower limits of integration.