Mister Exam

Other calculators

Integral of dx/(16-x^8) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |        8   
 |  16 - x    
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{1}{16 - x^{8}}\, dx$$
Integral(1/(16 - x^8), (x, 0, 1))
The answer (Indefinite) [src]
                    /            /    ___\                                                                                                        
                    |   ___      |x*\/ 2 |                                                                                                        
                    |-\/ 2 *acoth|-------|                                                                                                        
                    |            \   2   /        2                                                                                               
                    |----------------------  for x  > 2                                                                                           
                    |          2                                                                                                                  
                    <                                                                                                                             
                    |            /    ___\                                                                                                        
                    |   ___      |x*\/ 2 |                                                                                                        
                    |-\/ 2 *atanh|-------|                                                                                               /    ___\
  /                 |            \   2   /        2                                                                              ___     |x*\/ 2 |
 |                  |----------------------  for x  < 2      /     2      \                                   /     2      \   \/ 2 *atan|-------|
 |    1             \          2                          log\2 + x  - 2*x/   atan(1 + x)   atan(-1 + x)   log\2 + x  + 2*x/             \   2   /
 | ------- dx = C - ----------------------------------- - ----------------- + ----------- + ------------ + ----------------- + -------------------
 |       8                           32                          128               64            64               128                   64        
 | 16 - x                                                                                                                                         
 |                                                                                                                                                
/                                                                                                                                                 
$$\int \frac{1}{16 - x^{8}}\, dx = C - \frac{\begin{cases} - \frac{\sqrt{2} \operatorname{acoth}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} & \text{for}\: x^{2} > 2 \\- \frac{\sqrt{2} \operatorname{atanh}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} & \text{for}\: x^{2} < 2 \end{cases}}{32} - \frac{\log{\left(x^{2} - 2 x + 2 \right)}}{128} + \frac{\log{\left(x^{2} + 2 x + 2 \right)}}{128} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{64} + \frac{\operatorname{atan}{\left(x - 1 \right)}}{64} + \frac{\operatorname{atan}{\left(x + 1 \right)}}{64}$$
The graph
The answer [src]
                                                                                                                                                                                                                                                                                                                      / 1     I \        / 1     I \       ___ /pi*I      /  ___\\                                  ___ /  pi*I      /  ___\\                           
                                                                                                                                                                                                            ___ /          /       ___\\     ___    /  ___\     ___ /          /  ___\\     ___    /      ___\   pi*I*|--- + ---|   pi*I*|--- - ---|   I*\/ 2 *|---- + log\\/ 2 /|       ___    /        ___\   I*\/ 2 *|- ---- + log\\/ 2 /|       ___    /        ___\
/   1     I \ /pi*I      /  ___\\   /   1     I \ /  pi*I      /  ___\\   / 1     I \ /3*pi*I      /  ___\\   / 1     I \ /  3*pi*I      /  ___\\   /   1     I \              /   1     I \              \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /   \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /        \128   128/        \128   128/           \ 2               /   I*\/ 2 *log\1 - I*\/ 2 /           \   2               /   I*\/ 2 *log\1 + I*\/ 2 /
|- --- - ---|*|---- + log\\/ 2 /| + |- --- + ---|*|- ---- + log\\/ 2 /| + |--- - ---|*|------ + log\\/ 2 /| + |--- + ---|*|- ------ + log\\/ 2 /| - |- --- - ---|*log(2 + I) - |- --- + ---|*log(2 - I) - ------------------------------ - ---------------- + ------------------------- + -------------------- + ---------------- - ---------------- - --------------------------- - ------------------------ + ----------------------------- + ------------------------
\  128   128/ \ 4               /   \  128   128/ \   4               /   \128   128/ \  4                /   \128   128/ \    4                /   \  128   128/              \  128   128/                           128                       128                     128                      128                   2                  2                       128                         128                           128                          128           
$$- \frac{\sqrt{2} \log{\left(\sqrt{2} \right)}}{128} + \frac{\sqrt{2} \log{\left(1 + \sqrt{2} \right)}}{128} - \frac{\sqrt{2} \left(\log{\left(-1 + \sqrt{2} \right)} + i \pi\right)}{128} + \left(\frac{1}{128} + \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} - \frac{3 i \pi}{4}\right) - \frac{i \pi \left(\frac{1}{128} - \frac{i}{128}\right)}{2} - \left(- \frac{1}{128} + \frac{i}{128}\right) \log{\left(2 - i \right)} + \left(- \frac{1}{128} - \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} + \frac{i \pi}{4}\right) - \frac{\sqrt{2} i \log{\left(1 - \sqrt{2} i \right)}}{128} - \frac{\sqrt{2} i \left(\log{\left(\sqrt{2} \right)} + \frac{i \pi}{2}\right)}{128} + \frac{\sqrt{2} i \left(\log{\left(\sqrt{2} \right)} - \frac{i \pi}{2}\right)}{128} + \frac{\sqrt{2} i \log{\left(1 + \sqrt{2} i \right)}}{128} + \left(- \frac{1}{128} + \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} - \frac{i \pi}{4}\right) - \left(- \frac{1}{128} - \frac{i}{128}\right) \log{\left(2 + i \right)} + \frac{i \pi \left(\frac{1}{128} + \frac{i}{128}\right)}{2} + \left(\frac{1}{128} - \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} + \frac{3 i \pi}{4}\right) + \frac{\sqrt{2} \left(\log{\left(\sqrt{2} \right)} + i \pi\right)}{128}$$
=
=
                                                                                                                                                                                                                                                                                                                      / 1     I \        / 1     I \       ___ /pi*I      /  ___\\                                  ___ /  pi*I      /  ___\\                           
                                                                                                                                                                                                            ___ /          /       ___\\     ___    /  ___\     ___ /          /  ___\\     ___    /      ___\   pi*I*|--- + ---|   pi*I*|--- - ---|   I*\/ 2 *|---- + log\\/ 2 /|       ___    /        ___\   I*\/ 2 *|- ---- + log\\/ 2 /|       ___    /        ___\
/   1     I \ /pi*I      /  ___\\   /   1     I \ /  pi*I      /  ___\\   / 1     I \ /3*pi*I      /  ___\\   / 1     I \ /  3*pi*I      /  ___\\   /   1     I \              /   1     I \              \/ 2 *\pi*I + log\-1 + \/ 2 //   \/ 2 *log\\/ 2 /   \/ 2 *\pi*I + log\\/ 2 //   \/ 2 *log\1 + \/ 2 /        \128   128/        \128   128/           \ 2               /   I*\/ 2 *log\1 - I*\/ 2 /           \   2               /   I*\/ 2 *log\1 + I*\/ 2 /
|- --- - ---|*|---- + log\\/ 2 /| + |- --- + ---|*|- ---- + log\\/ 2 /| + |--- - ---|*|------ + log\\/ 2 /| + |--- + ---|*|- ------ + log\\/ 2 /| - |- --- - ---|*log(2 + I) - |- --- + ---|*log(2 - I) - ------------------------------ - ---------------- + ------------------------- + -------------------- + ---------------- - ---------------- - --------------------------- - ------------------------ + ----------------------------- + ------------------------
\  128   128/ \ 4               /   \  128   128/ \   4               /   \128   128/ \  4                /   \128   128/ \    4                /   \  128   128/              \  128   128/                           128                       128                     128                      128                   2                  2                       128                         128                           128                          128           
$$- \frac{\sqrt{2} \log{\left(\sqrt{2} \right)}}{128} + \frac{\sqrt{2} \log{\left(1 + \sqrt{2} \right)}}{128} - \frac{\sqrt{2} \left(\log{\left(-1 + \sqrt{2} \right)} + i \pi\right)}{128} + \left(\frac{1}{128} + \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} - \frac{3 i \pi}{4}\right) - \frac{i \pi \left(\frac{1}{128} - \frac{i}{128}\right)}{2} - \left(- \frac{1}{128} + \frac{i}{128}\right) \log{\left(2 - i \right)} + \left(- \frac{1}{128} - \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} + \frac{i \pi}{4}\right) - \frac{\sqrt{2} i \log{\left(1 - \sqrt{2} i \right)}}{128} - \frac{\sqrt{2} i \left(\log{\left(\sqrt{2} \right)} + \frac{i \pi}{2}\right)}{128} + \frac{\sqrt{2} i \left(\log{\left(\sqrt{2} \right)} - \frac{i \pi}{2}\right)}{128} + \frac{\sqrt{2} i \log{\left(1 + \sqrt{2} i \right)}}{128} + \left(- \frac{1}{128} + \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} - \frac{i \pi}{4}\right) - \left(- \frac{1}{128} - \frac{i}{128}\right) \log{\left(2 + i \right)} + \frac{i \pi \left(\frac{1}{128} + \frac{i}{128}\right)}{2} + \left(\frac{1}{128} - \frac{i}{128}\right) \left(\log{\left(\sqrt{2} \right)} + \frac{3 i \pi}{4}\right) + \frac{\sqrt{2} \left(\log{\left(\sqrt{2} \right)} + i \pi\right)}{128}$$
(-1/128 - i/128)*(pi*i/4 + log(sqrt(2))) + (-1/128 + i/128)*(-pi*i/4 + log(sqrt(2))) + (1/128 - i/128)*(3*pi*i/4 + log(sqrt(2))) + (1/128 + i/128)*(-3*pi*i/4 + log(sqrt(2))) - (-1/128 - i/128)*log(2 + i) - (-1/128 + i/128)*log(2 - i) - sqrt(2)*(pi*i + log(-1 + sqrt(2)))/128 - sqrt(2)*log(sqrt(2))/128 + sqrt(2)*(pi*i + log(sqrt(2)))/128 + sqrt(2)*log(1 + sqrt(2))/128 + pi*i*(1/128 + i/128)/2 - pi*i*(1/128 - i/128)/2 - i*sqrt(2)*(pi*i/2 + log(sqrt(2)))/128 - i*sqrt(2)*log(1 - i*sqrt(2))/128 + i*sqrt(2)*(-pi*i/2 + log(sqrt(2)))/128 + i*sqrt(2)*log(1 + i*sqrt(2))/128
Numerical answer [src]
0.0629490297759173
0.0629490297759173

    Use the examples entering the upper and lower limits of integration.