Mister Exam

Other calculators


dx/root(1-x^2)

Integral of dx/root(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___              
 \/ 2               
 -----              
   2                
   /                
  |                 
  |        1        
  |   ----------- dx
  |      ________   
  |     /      2    
  |   \/  1 - x     
  |                 
 /                  
 0                  
$$\int\limits_{0}^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{1 - x^{2}}}\, dx$$
Integral(1/(sqrt(1 - x^2)), (x, 0, sqrt(2)/2))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -1) & (x < 1), context=1/(sqrt(1 - x**2)), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 |      1                                                 
 | ----------- dx = C + ({asin(x)  for And(x > -1, x < 1))
 |    ________                                            
 |   /      2                                             
 | \/  1 - x                                              
 |                                                        
/                                                         
$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx = C + \begin{cases} \operatorname{asin}{\left(x \right)} & \text{for}\: x > -1 \wedge x < 1 \end{cases}$$
The graph
The answer [src]
pi
--
4 
$$\frac{\pi}{4}$$
=
=
pi
--
4 
$$\frac{\pi}{4}$$
pi/4
Numerical answer [src]
0.785398163397448
0.785398163397448
The graph
Integral of dx/root(1-x^2) dx

    Use the examples entering the upper and lower limits of integration.