Mister Exam

Other calculators

Integral of (dx)/(1+sqrt(2x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |        _________   
 |  1 + \/ 2*x - 1    
 |                    
/                     
1                     
$$\int\limits_{1}^{3} \frac{1}{\sqrt{2 x - 1} + 1}\, dx$$
Integral(1/(1 + sqrt(2*x - 1)), (x, 1, 3))
Detail solution
  1. Let .

    Then let and substitute :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                           
 |                                                            
 |        1                   _________      /      _________\
 | --------------- dx = C + \/ 2*x - 1  - log\1 + \/ 2*x - 1 /
 |       _________                                            
 | 1 + \/ 2*x - 1                                             
 |                                                            
/                                                             
$$\int \frac{1}{\sqrt{2 x - 1} + 1}\, dx = C + \sqrt{2 x - 1} - \log{\left(\sqrt{2 x - 1} + 1 \right)}$$
The graph
The answer [src]
       ___      /      ___\         
-1 + \/ 5  - log\1 + \/ 5 / + log(2)
$$- \log{\left(1 + \sqrt{5} \right)} - 1 + \log{\left(2 \right)} + \sqrt{5}$$
=
=
       ___      /      ___\         
-1 + \/ 5  - log\1 + \/ 5 / + log(2)
$$- \log{\left(1 + \sqrt{5} \right)} - 1 + \log{\left(2 \right)} + \sqrt{5}$$
-1 + sqrt(5) - log(1 + sqrt(5)) + log(2)
Numerical answer [src]
0.754856152440186
0.754856152440186

    Use the examples entering the upper and lower limits of integration.