3 / | | 1 | --------------- dx | _________ | 1 + \/ 2*x - 1 | / 1
Integral(1/(1 + sqrt(2*x - 1)), (x, 1, 3))
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 1 _________ / _________\ | --------------- dx = C + \/ 2*x - 1 - log\1 + \/ 2*x - 1 / | _________ | 1 + \/ 2*x - 1 | /
___ / ___\ -1 + \/ 5 - log\1 + \/ 5 / + log(2)
=
___ / ___\ -1 + \/ 5 - log\1 + \/ 5 / + log(2)
-1 + sqrt(5) - log(1 + sqrt(5)) + log(2)
Use the examples entering the upper and lower limits of integration.