1 / | | 1 | ------ dx | 2 | 1 - x | / 0
Integral(1/(1 - x^2), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 < 1)], context=1/(1 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | // 2 \ | 1 ||acoth(x) for x > 1| | ------ dx = C + |< | | 2 || 2 | | 1 - x \\atanh(x) for x < 1/ | /
pi*I oo + ---- 2
=
pi*I oo + ---- 2
oo + pi*i/2
Use the examples entering the upper and lower limits of integration.