Mister Exam

Other calculators

Integral of dx/(ln(x)-1^2)*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      x        
 |  ---------- dx
 |  log(x) - 1   
 |               
/                
 2               
e                
$$\int\limits_{e^{2}}^{1} \frac{x}{\log{\left(x \right)} - 1}\, dx$$
Integral(x/(log(x) - 1), (x, exp(2), 1))
The answer (Indefinite) [src]
  /                      /              
 |                      |               
 |     x                |      x        
 | ---------- dx = C +  | ----------- dx
 | log(x) - 1           | -1 + log(x)   
 |                      |               
/                      /                
$$\int \frac{x}{\log{\left(x \right)} - 1}\, dx = C + \int \frac{x}{\log{\left(x \right)} - 1}\, dx$$
The answer [src]
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |  -1 + log(x)   
 |                
/                 
 2                
e                 
$$\int\limits_{e^{2}}^{1} \frac{x}{\log{\left(x \right)} - 1}\, dx$$
=
=
  1               
  /               
 |                
 |       x        
 |  ----------- dx
 |  -1 + log(x)   
 |                
/                 
 2                
e                 
$$\int\limits_{e^{2}}^{1} \frac{x}{\log{\left(x \right)} - 1}\, dx$$
Integral(x/(-1 + log(x)), (x, exp(2), 1))
Numerical answer [src]
-209.316722367938
-209.316722367938

    Use the examples entering the upper and lower limits of integration.