1 / | | 1 | -------- dx | 2 | 4 - 9*x | / 0
Integral(1/(4 - 9*x^2), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), False), (ArccothRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), x**2 > 4/9), (ArctanhRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), x**2 < 4/9)], context=1/(4 - 9*x**2), symbol=x)
Add the constant of integration:
The answer is:
// /3*x\ \
||acoth|---| |
/ || \ 2 / 2 |
| ||---------- for x > 4/9|
| 1 || 6 |
| -------- dx = C + |< |
| 2 || /3*x\ |
| 4 - 9*x ||atanh|---| |
| || \ 2 / 2 |
/ ||---------- for x < 4/9|
\\ 6 /
Use the examples entering the upper and lower limits of integration.