Mister Exam

Other calculators


dx/(4-9*x^2)

Integral of dx/(4-9*x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dx
 |         2   
 |  4 - 9*x    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{4 - 9 x^{2}}\, dx$$
Integral(1/(4 - 9*x^2), (x, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), False), (ArccothRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), x**2 > 4/9), (ArctanhRule(a=1, b=-9, c=4, context=1/(4 - 9*x**2), symbol=x), x**2 < 4/9)], context=1/(4 - 9*x**2), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                     //     /3*x\              \
                     ||acoth|---|              |
  /                  ||     \ 2 /       2      |
 |                   ||----------  for x  > 4/9|
 |    1              ||    6                   |
 | -------- dx = C + |<                        |
 |        2          ||     /3*x\              |
 | 4 - 9*x           ||atanh|---|              |
 |                   ||     \ 2 /       2      |
/                    ||----------  for x  < 4/9|
                     \\    6                   /
$$\int \frac{1}{4 - 9 x^{2}}\, dx = C + \begin{cases} \frac{\operatorname{acoth}{\left(\frac{3 x}{2} \right)}}{6} & \text{for}\: x^{2} > \frac{4}{9} \\\frac{\operatorname{atanh}{\left(\frac{3 x}{2} \right)}}{6} & \text{for}\: x^{2} < \frac{4}{9} \end{cases}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
9.87634846831445
9.87634846831445
The graph
Integral of dx/(4-9*x^2) dx

    Use the examples entering the upper and lower limits of integration.