Mister Exam

Other calculators

Integral of dx/(5-2*x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |           2   
 |  (5 - 2*x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{\left(5 - 2 x\right)^{2}}\, dx$$
Integral(1/((5 - 2*x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |     1                    1      
 | ---------- dx = C - ------------
 |          2          2*(-5 + 2*x)
 | (5 - 2*x)                       
 |                                 
/                                  
$$\int \frac{1}{\left(5 - 2 x\right)^{2}}\, dx = C - \frac{1}{2 \left(2 x - 5\right)}$$
The graph
The answer [src]
1/15
$$\frac{1}{15}$$
=
=
1/15
$$\frac{1}{15}$$
1/15
Numerical answer [src]
0.0666666666666667
0.0666666666666667

    Use the examples entering the upper and lower limits of integration.