1 / | | 1 | ------------- dx | 2 | cos (a*x + b) | / 0
Integral(1/(cos(a*x + b)^2), (x, 0, 1))
// / -pi \\ || zoo*x for And|a = 0, b = ----|| || \ 2 /| || | || x | || ------- for a = 0 | || 2 | || cos (b) | / || | | || / pi\ | | 1 || -|b + --| | | ------------- dx = C + |< \ 2 / | | 2 || zoo*x for a = ---------- | | cos (a*x + b) || x | | || | / || /b a*x\ | || -2*tan|- + ---| | || \2 2 / | ||-------------------- otherwise | || 2/b a*x\ | ||-a + a*tan |- + ---| | || \2 2 / | \\ /
/ / -pi \ | nan for And|a = 0, b = ----| | \ 2 / | | 1 | ------- for a = 0 | 2 | cos (b) | | 1 | / | | | | / / pi\ | | | -|b + --| | | | \ 2 / < | | 0 for a = ---------- | | | x | | | | | | / 2/b a*x\\ 2 2/b a*x\ / 2/b a*x\\ | | < a*|1 + tan |- + ---|| 2*a *tan |- + ---|*|1 + tan |- + ---|| dx otherwise | | | \ \2 2 // \2 2 / \ \2 2 // | | |- --------------------- + -------------------------------------- otherwise | | | 2/b a*x\ 2 | | | -a + a*tan |- + ---| / 2/b a*x\\ | | | \2 2 / |-a + a*tan |- + ---|| | | | \ \2 2 // | | \ | | |/ |0 \
=
/ / -pi \ | nan for And|a = 0, b = ----| | \ 2 / | | 1 | ------- for a = 0 | 2 | cos (b) | | 1 | / | | | | / / pi\ | | | -|b + --| | | | \ 2 / < | | 0 for a = ---------- | | | x | | | | | | / 2/b a*x\\ 2 2/b a*x\ / 2/b a*x\\ | | < a*|1 + tan |- + ---|| 2*a *tan |- + ---|*|1 + tan |- + ---|| dx otherwise | | | \ \2 2 // \2 2 / \ \2 2 // | | |- --------------------- + -------------------------------------- otherwise | | | 2/b a*x\ 2 | | | -a + a*tan |- + ---| / 2/b a*x\\ | | | \2 2 / |-a + a*tan |- + ---|| | | | \ \2 2 // | | \ | | |/ |0 \
Piecewise((nan, (a = 0)∧(b = -pi/2)), (cos(b)^(-2), a = 0), (Integral(Piecewise((0, a = -(b + pi/2)/x), (-a*(1 + tan(b/2 + a*x/2)^2)/(-a + a*tan(b/2 + a*x/2)^2) + 2*a^2*tan(b/2 + a*x/2)^2*(1 + tan(b/2 + a*x/2)^2)/(-a + a*tan(b/2 + a*x/2)^2)^2, True)), (x, 0, 1)), True))
Use the examples entering the upper and lower limits of integration.