Mister Exam

Other calculators

Integral of (dx)/(cos^2(ax+b)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |     2            
 |  cos (a*x + b)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\cos^{2}{\left(a x + b \right)}}\, dx$$
Integral(1/(cos(a*x + b)^2), (x, 0, 1))
The answer (Indefinite) [src]
                          //                             /           -pi \\
                          ||       zoo*x          for And|a = 0, b = ----||
                          ||                             \            2  /|
                          ||                                              |
                          ||         x                                    |
                          ||      -------                for a = 0        |
                          ||         2                                    |
                          ||      cos (b)                                 |
  /                       ||                                              |
 |                        ||                                  /    pi\    |
 |       1                ||                                 -|b + --|    |
 | ------------- dx = C + |<                                  \    2 /    |
 |    2                   ||       zoo*x             for a = ----------   |
 | cos (a*x + b)          ||                                     x        |
 |                        ||                                              |
/                         ||        /b   a*x\                             |
                          ||  -2*tan|- + ---|                             |
                          ||        \2    2 /                             |
                          ||--------------------         otherwise        |
                          ||          2/b   a*x\                          |
                          ||-a + a*tan |- + ---|                          |
                          ||           \2    2 /                          |
                          \\                                              /
$$\int \frac{1}{\cos^{2}{\left(a x + b \right)}}\, dx = C + \begin{cases} \tilde{\infty} x & \text{for}\: a = 0 \wedge b = - \frac{\pi}{2} \\\frac{x}{\cos^{2}{\left(b \right)}} & \text{for}\: a = 0 \\\tilde{\infty} x & \text{for}\: a = - \frac{b + \frac{\pi}{2}}{x} \\- \frac{2 \tan{\left(\frac{a x}{2} + \frac{b}{2} \right)}}{a \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} - a} & \text{otherwise} \end{cases}$$
The answer [src]
/                                                                                                     /           -pi \
|                                            nan                                               for And|a = 0, b = ----|
|                                                                                                     \            2  /
|                                                                                                                      
|                                             1                                                                        
|                                          -------                                                    for a = 0        
|                                             2                                                                        
|                                          cos (b)                                                                     
|                                                                                                                      
|  1                                                                                                                   
|  /                                                                                                                   
| |                                                                                                                    
| |  /                                                                           /    pi\                              
| |  |                                                                          -|b + --|                              
| |  |                                                                           \    2 /                              
< |  |                               0                                  for a = ----------                             
| |  |                                                                              x                                  
| |  |                                                                                                                 
| |  |    /       2/b   a*x\\      2    2/b   a*x\ /       2/b   a*x\\                                                 
| |  <  a*|1 + tan |- + ---||   2*a *tan |- + ---|*|1 + tan |- + ---||                     dx         otherwise        
| |  |    \        \2    2 //            \2    2 / \        \2    2 //                                                 
| |  |- --------------------- + --------------------------------------      otherwise                                  
| |  |             2/b   a*x\                                2                                                         
| |  |   -a + a*tan |- + ---|          /          2/b   a*x\\                                                          
| |  |              \2    2 /          |-a + a*tan |- + ---||                                                          
| |  |                                 \           \2    2 //                                                          
| |  \                                                                                                                 
| |                                                                                                                    
|/                                                                                                                     
|0                                                                                                                     
\                                                                                                                      
$$\begin{cases} \text{NaN} & \text{for}\: a = 0 \wedge b = - \frac{\pi}{2} \\\frac{1}{\cos^{2}{\left(b \right)}} & \text{for}\: a = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: a = - \frac{b + \frac{\pi}{2}}{x} \\\frac{2 a^{2} \left(\tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} + 1\right) \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)}}{\left(a \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} - a\right)^{2}} - \frac{a \left(\tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} + 1\right)}{a \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} - a} & \text{otherwise} \end{cases}\, dx & \text{otherwise} \end{cases}$$
=
=
/                                                                                                     /           -pi \
|                                            nan                                               for And|a = 0, b = ----|
|                                                                                                     \            2  /
|                                                                                                                      
|                                             1                                                                        
|                                          -------                                                    for a = 0        
|                                             2                                                                        
|                                          cos (b)                                                                     
|                                                                                                                      
|  1                                                                                                                   
|  /                                                                                                                   
| |                                                                                                                    
| |  /                                                                           /    pi\                              
| |  |                                                                          -|b + --|                              
| |  |                                                                           \    2 /                              
< |  |                               0                                  for a = ----------                             
| |  |                                                                              x                                  
| |  |                                                                                                                 
| |  |    /       2/b   a*x\\      2    2/b   a*x\ /       2/b   a*x\\                                                 
| |  <  a*|1 + tan |- + ---||   2*a *tan |- + ---|*|1 + tan |- + ---||                     dx         otherwise        
| |  |    \        \2    2 //            \2    2 / \        \2    2 //                                                 
| |  |- --------------------- + --------------------------------------      otherwise                                  
| |  |             2/b   a*x\                                2                                                         
| |  |   -a + a*tan |- + ---|          /          2/b   a*x\\                                                          
| |  |              \2    2 /          |-a + a*tan |- + ---||                                                          
| |  |                                 \           \2    2 //                                                          
| |  \                                                                                                                 
| |                                                                                                                    
|/                                                                                                                     
|0                                                                                                                     
\                                                                                                                      
$$\begin{cases} \text{NaN} & \text{for}\: a = 0 \wedge b = - \frac{\pi}{2} \\\frac{1}{\cos^{2}{\left(b \right)}} & \text{for}\: a = 0 \\\int\limits_{0}^{1} \begin{cases} 0 & \text{for}\: a = - \frac{b + \frac{\pi}{2}}{x} \\\frac{2 a^{2} \left(\tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} + 1\right) \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)}}{\left(a \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} - a\right)^{2}} - \frac{a \left(\tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} + 1\right)}{a \tan^{2}{\left(\frac{a x}{2} + \frac{b}{2} \right)} - a} & \text{otherwise} \end{cases}\, dx & \text{otherwise} \end{cases}$$
Piecewise((nan, (a = 0)∧(b = -pi/2)), (cos(b)^(-2), a = 0), (Integral(Piecewise((0, a = -(b + pi/2)/x), (-a*(1 + tan(b/2 + a*x/2)^2)/(-a + a*tan(b/2 + a*x/2)^2) + 2*a^2*tan(b/2 + a*x/2)^2*(1 + tan(b/2 + a*x/2)^2)/(-a + a*tan(b/2 + a*x/2)^2)^2, True)), (x, 0, 1)), True))

    Use the examples entering the upper and lower limits of integration.