Mister Exam

Other calculators

Integral of (dx)/(2x+3)^5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  o              
  /              
 |               
 |      1        
 |  ---------- dx
 |           5   
 |  (2*x + 3)    
 |               
/                
0                
$$\int\limits_{0}^{o} \frac{1}{\left(2 x + 3\right)^{5}}\, dx$$
Integral(1/((2*x + 3)^5), (x, 0, o))
The answer (Indefinite) [src]
  /                                                            
 |                                                             
 |     1                                  1                    
 | ---------- dx = C - ----------------------------------------
 |          5                     4        3                  2
 | (2*x + 3)           648 + 128*x  + 768*x  + 1728*x + 1728*x 
 |                                                             
/                                                              
$$\int \frac{1}{\left(2 x + 3\right)^{5}}\, dx = C - \frac{1}{128 x^{4} + 768 x^{3} + 1728 x^{2} + 1728 x + 648}$$
The answer [src]
 1                       1                    
--- - ----------------------------------------
648              4        3                  2
      648 + 128*o  + 768*o  + 1728*o + 1728*o 
$$\frac{1}{648} - \frac{1}{128 o^{4} + 768 o^{3} + 1728 o^{2} + 1728 o + 648}$$
=
=
 1                       1                    
--- - ----------------------------------------
648              4        3                  2
      648 + 128*o  + 768*o  + 1728*o + 1728*o 
$$\frac{1}{648} - \frac{1}{128 o^{4} + 768 o^{3} + 1728 o^{2} + 1728 o + 648}$$
1/648 - 1/(648 + 128*o^4 + 768*o^3 + 1728*o + 1728*o^2)

    Use the examples entering the upper and lower limits of integration.