Mister Exam

Other calculators

Integral of dx/(2x+1)cbrt(2x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  3 _________   
 |  \/ 2*x + 1    
 |  ----------- dx
 |    2*x + 1     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sqrt[3]{2 x + 1}}{2 x + 1}\, dx$$
Integral((2*x + 1)^(1/3)/(2*x + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 | 3 _________            3 _________
 | \/ 2*x + 1           3*\/ 2*x + 1 
 | ----------- dx = C + -------------
 |   2*x + 1                  2      
 |                                   
/                                    
$$\int \frac{\sqrt[3]{2 x + 1}}{2 x + 1}\, dx = C + \frac{3 \sqrt[3]{2 x + 1}}{2}$$
The graph
The answer [src]
        3 ___
  3   3*\/ 3 
- - + -------
  2      2   
$$- \frac{3}{2} + \frac{3 \sqrt[3]{3}}{2}$$
=
=
        3 ___
  3   3*\/ 3 
- - + -------
  2      2   
$$- \frac{3}{2} + \frac{3 \sqrt[3]{3}}{2}$$
-3/2 + 3*3^(1/3)/2
Numerical answer [src]
0.663374355461113
0.663374355461113

    Use the examples entering the upper and lower limits of integration.