Mister Exam

Other calculators

Integral of dt/((t+1)^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dt
 |         4   
 |  (t + 1)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{\left(t + 1\right)^{4}}\, dt$$
Integral(1/((t + 1)^4), (t, 0, 1))
The answer (Indefinite) [src]
  /                                       
 |                                        
 |    1                        1          
 | -------- dt = C - ---------------------
 |        4                 3            2
 | (t + 1)           3 + 3*t  + 9*t + 9*t 
 |                                        
/                                         
$$\int \frac{1}{\left(t + 1\right)^{4}}\, dt = C - \frac{1}{3 t^{3} + 9 t^{2} + 9 t + 3}$$
The graph
The answer [src]
7/24
$$\frac{7}{24}$$
=
=
7/24
$$\frac{7}{24}$$
7/24
Numerical answer [src]
0.291666666666667
0.291666666666667

    Use the examples entering the upper and lower limits of integration.