1 / | | __________ | / 2 | \/ 5 - 3*x dx | / 0
Integral(sqrt(5 - 3*x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(15)*sin(_theta)/3, rewritten=5*sqrt(3)*cos(_theta)**2/3, substep=ConstantTimesRule(constant=5*sqrt(3)/3, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=5*sqrt(3)*cos(_theta)**2/3, symbol=_theta), restriction=(x > -sqrt(15)/3) & (x < sqrt(15)/3), context=sqrt(5 - 3*x**2), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
/ // / / ____\ \ \ | || | |x*\/ 15 | __________| | | __________ || |asin|--------| ___ / 2 | | | / 2 || ___ | \ 5 / x*\/ 3 *\/ 5 - 3*x | | | \/ 5 - 3*x dx = C + |<5*\/ 3 *|-------------- + ---------------------| / ____ ____\| | || \ 2 10 / | -\/ 15 \/ 15 || / ||------------------------------------------------ for And|x > --------, x < ------|| || 3 \ 3 3 /| \\ /
/ ____\ ___ |\/ 15 | ___ 5*\/ 3 *asin|------| \/ 2 \ 5 / ----- + -------------------- 2 6
=
/ ____\ ___ |\/ 15 | ___ 5*\/ 3 *asin|------| \/ 2 \ 5 / ----- + -------------------- 2 6
sqrt(2)/2 + 5*sqrt(3)*asin(sqrt(15)/5)/6
Use the examples entering the upper and lower limits of integration.