Mister Exam

Other calculators

Integral of //e^(3x)+3/2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  / 3*x   3*x\   
 |  |E    + ---| dx
 |  \        2 /   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(\frac{3 x}{2} + e^{3 x}\right)\, dx$$
Integral(E^(3*x) + 3*x/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                        3*x      2
 | / 3*x   3*x\          e      3*x 
 | |E    + ---| dx = C + ---- + ----
 | \        2 /           3      4  
 |                                  
/                                   
$$\int \left(\frac{3 x}{2} + e^{3 x}\right)\, dx = C + \frac{3 x^{2}}{4} + \frac{e^{3 x}}{3}$$
The graph
The answer [src]
      3
5    e 
-- + --
12   3 
$$\frac{5}{12} + \frac{e^{3}}{3}$$
=
=
      3
5    e 
-- + --
12   3 
$$\frac{5}{12} + \frac{e^{3}}{3}$$
5/12 + exp(3)/3
Numerical answer [src]
7.11184564106256
7.11184564106256

    Use the examples entering the upper and lower limits of integration.