1 / | | / 3*x 3*x\ | |E + ---| dx | \ 2 / | / 0
Integral(E^(3*x) + 3*x/2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | 3*x 2 | / 3*x 3*x\ e 3*x | |E + ---| dx = C + ---- + ---- | \ 2 / 3 4 | /
3 5 e -- + -- 12 3
=
3 5 e -- + -- 12 3
5/12 + exp(3)/3
Use the examples entering the upper and lower limits of integration.