Mister Exam

Other calculators

Integral of d/dx(arctg(1/x))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     d      
 |  ------- dx
 |      /1\   
 |  atan|-|   
 |      \x/   
 |            
/             
-1            
$$\int\limits_{-1}^{1} \frac{d}{\operatorname{atan}{\left(\frac{1}{x} \right)}}\, dx$$
Integral(d/atan(1/x), (x, -1, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     /          
 |                     |           
 |    d                |    1      
 | ------- dx = C + d* | ------- dx
 |     /1\             |     /1\   
 | atan|-|             | atan|-|   
 |     \x/             |     \x/   
 |                     |           
/                     /            
$$\int \frac{d}{\operatorname{atan}{\left(\frac{1}{x} \right)}}\, dx = C + d \int \frac{1}{\operatorname{atan}{\left(\frac{1}{x} \right)}}\, dx$$
The answer [src]
    1           
    /           
   |            
   |     1      
d* |  ------- dx
   |      /1\   
   |  atan|-|   
   |      \x/   
   |            
  /             
  -1            
$$d \int\limits_{-1}^{1} \frac{1}{\operatorname{atan}{\left(\frac{1}{x} \right)}}\, dx$$
=
=
    1           
    /           
   |            
   |     1      
d* |  ------- dx
   |      /1\   
   |  atan|-|   
   |      \x/   
   |            
  /             
  -1            
$$d \int\limits_{-1}^{1} \frac{1}{\operatorname{atan}{\left(\frac{1}{x} \right)}}\, dx$$
d*Integral(1/atan(1/x), (x, -1, 1))

    Use the examples entering the upper and lower limits of integration.