Mister Exam

Other calculators

Integral of cbrt(4x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  3 _________   
 |  \/ 4*x - 5  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt[3]{4 x - 5}\, dx$$
Integral((4*x - 5)^(1/3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 4/3
 | 3 _________          3*(4*x - 5)   
 | \/ 4*x - 5  dx = C + --------------
 |                            16      
/                                     
$$\int \sqrt[3]{4 x - 5}\, dx = C + \frac{3 \left(4 x - 5\right)^{\frac{4}{3}}}{16}$$
The graph
The answer [src]
    3 ____      3 ____
  3*\/ -1    15*\/ -5 
- -------- + ---------
     16          16   
$$- \frac{3 \sqrt[3]{-1}}{16} + \frac{15 \sqrt[3]{-5}}{16}$$
=
=
    3 ____      3 ____
  3*\/ -1    15*\/ -5 
- -------- + ---------
     16          16   
$$- \frac{3 \sqrt[3]{-1}}{16} + \frac{15 \sqrt[3]{-5}}{16}$$
-3*(-1)^(1/3)/16 + 15*(-5)^(1/3)/16
Numerical answer [src]
(0.707801225004702 + 1.22594768336763j)
(0.707801225004702 + 1.22594768336763j)

    Use the examples entering the upper and lower limits of integration.