Mister Exam

Integral of ctgh(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  coth(2*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \coth{\left(2 x \right)}\, dx$$
Integral(coth(2*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                          
 |                        log(tanh(2*x))   log(1 + tanh(2*x))
 | coth(2*x) dx = C + x + -------------- - ------------------
 |                              2                  2         
/                                                            
$$\int \coth{\left(2 x \right)}\, dx = C + x - \frac{\log{\left(\tanh{\left(2 x \right)} + 1 \right)}}{2} + \frac{\log{\left(\tanh{\left(2 x \right)} \right)}}{2}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
22.3428331630236
22.3428331630236

    Use the examples entering the upper and lower limits of integration.