Mister Exam

Other calculators

Integral of (csc^2xcotx)/(9+cot^4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     2             
 |  csc (x)*cot(x)   
 |  -------------- dx
 |          4        
 |   9 + cot (x)     
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\cot{\left(x \right)} \csc^{2}{\left(x \right)}}{\cot^{4}{\left(x \right)} + 9}\, dx$$
Integral((csc(x)^2*cot(x))/(9 + cot(x)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                            /   2   \
 |                             |cot (x)|
 |    2                    atan|-------|
 | csc (x)*cot(x)              \   3   /
 | -------------- dx = C - -------------
 |         4                     6      
 |  9 + cot (x)                         
 |                                      
/                                       
$$\int \frac{\cot{\left(x \right)} \csc^{2}{\left(x \right)}}{\cot^{4}{\left(x \right)} + 9}\, dx = C - \frac{\operatorname{atan}{\left(\frac{\cot^{2}{\left(x \right)}}{3} \right)}}{6}$$
Numerical answer [src]
0.239037363315438
0.239037363315438

    Use the examples entering the upper and lower limits of integration.