Integral of cot(sqrt(x)+1)*(1/sqrt(x)) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x+1.
Then let du=2xdx and substitute 2du:
∫2cot(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cot(u)du=2∫cot(u)du
-
Rewrite the integrand:
cot(u)=sin(u)cos(u)
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(sin(u))
So, the result is: 2log(sin(u))
Now substitute u back in:
2log(sin(x+1))
Method #2
-
Let u=x.
Then let du=2xdx and substitute 2du:
∫2cot(u+1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cot(u+1)du=2∫cot(u+1)du
-
Rewrite the integrand:
cot(u+1)=sin(u+1)cos(u+1)
-
Let u=sin(u+1).
Then let du=cos(u+1)du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(sin(u+1))
So, the result is: 2log(sin(u+1))
Now substitute u back in:
2log(sin(x+1))
-
Now simplify:
2log(sin(x+1))
-
Add the constant of integration:
2log(sin(x+1))+constant
The answer is:
2log(sin(x+1))+constant
The answer (Indefinite)
[src]
/
|
| / ___ \
| cot\\/ x + 1/ / / ___ \\
| -------------- dx = C + 2*log\sin\\/ x + 1//
| ___
| \/ x
|
/
∫xcot(x+1)dx=C+2log(sin(x+1))
The graph
Use the examples entering the upper and lower limits of integration.