Mister Exam

Integral of Cosx2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 4               
  /              
 |               
 |  cos(x)*2*x dx
 |               
/                
0                
$$\int\limits_{0}^{\frac{\pi}{4}} x 2 \cos{\left(x \right)}\, dx$$
Integral((cos(x)*2)*x, (x, 0, pi/4))
The answer (Indefinite) [src]
  /                                         
 |                                          
 | cos(x)*2*x dx = C + 2*cos(x) + 2*x*sin(x)
 |                                          
/                                           
$$\int x 2 \cos{\left(x \right)}\, dx = C + 2 x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$
The graph
The answer [src]
                  ___
       ___   pi*\/ 2 
-2 + \/ 2  + --------
                4    
$$-2 + \frac{\sqrt{2} \pi}{4} + \sqrt{2}$$
=
=
                  ___
       ___   pi*\/ 2 
-2 + \/ 2  + --------
                4    
$$-2 + \frac{\sqrt{2} \pi}{4} + \sqrt{2}$$
-2 + sqrt(2) + pi*sqrt(2)/4
Numerical answer [src]
0.524934296912687
0.524934296912687

    Use the examples entering the upper and lower limits of integration.